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Overview rh) peim

= Metamodels

= Gaussian Process background
= Gaussian Process formulation
= Examples

= Use of Gaussian Processes within other methods (e.g.
optimization)
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Metamodels )

= Metamodels: also called surrogate, response surface model,
or emulator.

= Typically constructed over a small number of simulation
model runs (“code runs”)

= The simulation is very costly to run, we can only afford a
limited number of runs, often dozens to a few hundred

= The code runs provide the training data (e.g. sets of input
parameters and corresponding response values)

= The metamodel is constructed to provide a fast, cheap
function evaluation for the purposes of uncertainty
guantification, sensitivity analysis, and optimization.

=  Simpson, T. W., V. Toropov, V. Balabanov, and F.A.C. Viana. Design and analysis of computer experiments
in multidisciplinary design optimization: A review of how far we have come or not. In Proceedings of the
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference), Victoria, British Columbia,

Canada, September 2008. AIAA Paper 2008-5802.
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Metamodels ) i

= Taylor series approximations

= Linear regression models

= Neural networks

= Moving least squares

= Radial Basis Functions

= Multivariate Adaptive Regression Splines (MARS)
= Gaussian process models

= Polynomial Chaos expansions

= Multi-fidelity models

= Reduced-order models




Gaussian Processes rh) peim

= Why are GPs popular emulators of computer models?
* They allow modeling of fairly complicated functional forms

= They do not just offer a prediction at a new point but an estimate of
the uncertainty in that prediction

= (Classic references:

= Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis
of computer experiments. Statistical Science, 4(4):409-435, 1989.

= Santner, T., B. Williams, and W. Notz. The Design and Analysis of
Computer Experiments. New York, NY: Springer, 2003.

= Rasmussen, C.E. and C.K.I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006. e-book:

= http://www.gaussianprocess.org/gpml/chapters/
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Gaussian Process rh) peim

= A stochastic process is a collection of random variables
{y(x) | xeX}indexed by a set X in N9, where d is the
number of inputs.

= A Gaussian process is a stochastic process for which any
finite set of y-variables has a joint multivariate Gaussian
distribution. That is, the joint probability distribution for
every finite subset of variables y(x,), ..y(x,) is multi-variate
normal.

= A GPis fully specified by its mean function pu(x) = E[y(x)]
and its covariance function C(x, x’).
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What does this mean? ) e

= Start with a set of runs of a computer code: at each sample x
we have output y.(x.).

= The output at a new input value, x is uncertain.

new’

= This is what a GP will predict.
= Related to regression.

= Related to random functions. From our set of samples, we
have a “deterministic” function that is a set of points {x, y(x)}
or {x, f(x)}. Instead of f(x), if we use the outcome of a random
draw from some joint distribution of random variables {Z(x,),
.. Z(x,)}, we get a realization of a random function.

= This is a stochastic process (e.g. generate many draws and get
many functions).



How do we simulate realizations DR
of a random function?

= Start with {Z(x,), ... Z(x,)} from a multivariate normal distribution
with mean 0 and covariance matrix C=Cov[Z(x;), Z(x;)].

" Tosimulate a random draw:
" Generate n standard normal(0,1) random variables, S.

= Perform a Cholesky decomposition C= LL!.
= Define Z = LS.

= Plot the points {x, Z, = Z(x.)}

= Connect the dots




Example covariance function in 1-D .

= Cov[Z(x), Z(x;)] = exp(-6x; - x;| ?)




Gaussian Process ) dei

= We have the capability to generate random functions

= We can add a mean function (typically a constant or a simple
polynomial regression)

= We can multiply the covariance by a constant to scale the
vertical axis.

= Now, we can vary 0 to get a certain amount of “wiggle” in the
random function (smaller O leads to less wiggle).

= NOW: we want to constrain these random functions to be
consistent with the data points we have

= We can either take a Bayesian approach or a maximum
likelihood (MLE) approach to estimate the parameters
governing the Gaussian process

= Start with a MLE approach




Gaussian Process rh) peim

= Typical formulation: a Gaussian process is defined by its mean
and covariance function. We assume:

El[y(x)] = f(x)'B Mean
Cov[y(x),y(x)] = o%r(x,x')  Covariance
Y~N(f(X)'B, 6*R) Multivariate Normal

= A few notes:

= x is one set of inputs of dimension d. We have N samples, x;, for
i=1...N. Each x.={x,,, x,,, .... ,x;,4}. Xdenotes the (d*N) set of all
samples, and B is the d*1 vector of regression coefficients. It may just
be a constant f.

= |t is more typical to write the covariance as the product of a scaling
factor o2 times the correlation 7(x, x').

= The full N * N correlation matrix between all points is R
= Yisthe (N*1) vector of response values.
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Gaussian Process ) dei

= NOW: whatis the prediction for a new point?

Ely(x)|¥Y] = f(x)"B +r(x")"R7'[Y — Fp]
Var[y(x")|Y] = 6?(1 — r(x*)TR1r(x*))

= The correlation matrix for the training points is R.

= r(x*)is the vector of correlations between the new point x*
and the existing N points. It is of size N*1.

= Fisthe set of basis functions for the original full data set X.

= These are the conditional predictions (conditional on the
data).




What does this look like? ) e,

staffwww.dcs.shef.ac.uk /

Note the reduction in variance as you have more data -



http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gp/

What does this look like?

fix)

Samples from the posterior

https://pythonhosted.org/infpy/gps.html
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This plot
shows mean
and variance
plus random
realizations




Properties of the GP approximation

= The mean prediction interpolates the data.

E[y(x)[Y] = f(x)'B +r(x)"RT'[Y — Fp]

= The mean prediction is a linear combination of basis
functions

= The predicted variance increases the further away the
new point is from existing points.

Var[y(x*)|Y] = 6?(1 — r(x)TR™1r(x*))

Sandia
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Correlation Function

= Want to capture the idea that nearby inputs have highly correlated
outputs.

= The correlation in some dimensions may be more important than
others...different “length-scales” in each dimension

= Common correlation functions include
Power-exponential (or squared exponential):

= Typically the exponent p; is 2, which gives smooth realizations. If p; is
1, you get much rougher realizations.

= Larger values of 6, mean smaller correlation in the x; direction.

R(X, x')=exp{—Z@j (x; - xj')'“”'}zli[exp(-é'j (X, —x;")")
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Correlation Function

Matern

R(x,x'):lili(-é’.‘xj - X;' V)

Arm K0 =
J:

= |s equal to the exponential covariance function when v = %.
= |s equal to the squared exponential when v 2 «©

= Typically, v=7%, 3/2, or 5/2, going a process that looks rough to a
process that is fairly smooth.

= Other covariances are possible: Cauchy, polynomial functions, etc.
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Putting it all together

= Start with N runs of a computer code, with points {x, y.}.
Ideally, the N points will be a well-spaced design such as Latin
Hypercube.

= Define the mean function for the Gaussian process.
= Often, zero mean or constant mean is used.

= Define the covariance function for the Gaussian process.
= Typically, the power-exponential function is used.

= Estimate the parameters governing the Gaussian process,
including B, o, and any parameters of the correlation
function R such as 0.
= Can use maximum likelihood or Bayesian methods

= Substitute the parameters in the prediction equations and
obtain mean and variance estimates for new points x*
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Parameter Estimation (MLE)

= The observed training values represent a realization of a multivariate
normal distribution.

N 1 1 _
f(¥) = (2m) 2|Z| 2exp [—5 Y-y - u)]
= The basic idea of MLE is to find the particular mean vector and
covariance matrix that define the most likely multivariate normal

distribution to result in the observed data.
= Take the Log Likelihood and maximize it:

= loglf(1) = —7log(2m) =5 (a*"|R) = 5 (¥ — FR)" R™*(¥ — FB)

= Drop the -1/2 term, and the first constant term and minimize the
negative log-likelihood:

* NLL = Nlog(c?) +log(IR]) + — (¥ — FB)" R™*(Y — FB)
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Parameter Estimation (MLE)

= Use global optimization methods to optimize the NLL
OR
= Use gradient-based optimization to optimize the NLL. The derivations have
been worked out with respect to B, o, and correlation parameters of R.

= Conditional on fixed values of the correlation parameters, the optimal
values for B and o are given by the generalized least squares formulation:

B = (FTR1F)~Y(FTR 1Y)
7% = (¥~ FB) R (¥ — FP)

= One can use an iterative method, and obtain optimal correlation
parameters 0, then calculate R and substitute it into above expressions
above for B and .

= This optimization has been studied fairly thoroughly. A good reference is:

Jay Martin. “Computational Improvements to Estimating Kriging Metamodel
Parameters.” Journal of Mechanical Design. Aug. 2009, Vol. 131, p. 084501:1-7.



Bayesian parameter estimation ) .

= Denote all of the parameters governing the GP as:
= ©®=(B,5,9).

= Bayesian approach to estimate posterior distribution on hyperparameters
®:
7(®] X,Y) o 7(®)L(X,Y |®)

= Likelihood is the same as before with MLE
= Use Markov Chain Monte Carlo (MCMC) to solve it
= Requires thousands of evaluations of the likelihood function

= Large amount of work done in the statistical community about priors on
these parameters, estimation of marginal likelihoods.

= Jeffreys-independent prior, reference priors, are often assumed

= Need to be careful that priors are not improper

= Reference: Paulo, Rui. Default priors for Gaussian processes. Ann. Statist. 33

(2005), no. 2, 556--582. d0i:10.1214/009053604000001264.
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Experimental Design ) .

= The training set of {x.} points, i= 1...N is usually a space-filling
design such as a Latin Hypercube design or a maxi-min LHS

= Want the points to be well spaced

= Don’t want highly collinear points (close together)
= PROBLEM:

= The prediction calculations require the inversion of the correlation
matrix

= Often the correlation matrix is ill-conditioned and may be numerically
singular

= Happens even with a few hundred points in 2-D
= One can’tinvert R to use in the prediction calculation

22



Techniques to handle ill-conditioningm i
of the correlation matrix

= Remove points in a random or structured way (“Sparsification”)
= Often, a small “jitter” or noise term o, is added to the diagonal
terms of the covariance matrix to make the matrix better
conditioned.
C = o0*R - C =0*R + 0.°l,

= Adding a nugget term
= Estimate the nugget as part of the measurement error

= Fix the measurement error and add a nugget, may have to do this
iteratively until the nugget is big enough to make R well-conditioned




Techniques to handle ill-conditioningm i
of the correlation matrix (cont’d)

= Linear algebra tricks
= Don’t take the inverse of R, take the Cholesky factorization
= Pseudo-inverse
= Discards small singular values
= Pivoted Cholesky Factorization
= discard additional copies of the information that is most duplicated

= Decrease the maximum eigenvalue and increase the minimum
eigenvalue

= Gradient-enhanced kriging

= SAND Report 2013-7022. Efficient and Robust Gradient
Enhanced Kriging Emulators, by Keith Dalbey.
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Software and Resources
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Resources

= Websites: www.gaussianprocess.org

= Managing Uncertainty in Computer Models (MUCM):
= UK project headed by Prof. Tony O’Hagan, University of Sheffield
= http://www.mucm.ac.uk/Pages/ReadingList.html

= Books:

= Gaussian Processes for Machine Learning, Carl Edward Rasmussen and
Chris Williams, MIT Press, 2006.

= Statistics for Spatial Data, Noel A. C. Cressie, Wiley, 1993.

= The Design and Analysis of Computer Experiments. Santner, T., B.
Williams, and W. Notz. Springer, 2003.




Software and Resources ) i,

= Software:

= R: tgp (Gramacy and Lee), gptk (Kalaitzis, Lawrence, et al.), GPfit
MacDonald, Chipman, and Ranjan)

= Matlab: gpml (Rasmussen, Williams, Nickisch), GPmat (Sheffield
Group)

= Python: scikit-learn. http://scikit-learn.org/stable/

= Python: GPy, gptools, pyGPs, etc.

= C++: https://github.com/mblum/libgp
= MIT Group: MUQ/GPEXP (Python)

= Dakota/Surfpack (C++)

= |ots of others....




Example Use Cases




Efficient Global Optimization ) .

= Techniqgue due to Jones, Schonlau, Welch

= Build global Gaussian process approximation 123

to initial sample 10; GP surrogate ...

= Balance global exploration (add points with z_; T
high predicted variance) with local optimality 4_;
(promising minima) via an “expected ) True fn
improvement function” :
UD'”ZIE”'-'-Il”'EL]'“:IS”1[]'12
E[/(x)] = E [max(fuin — Y. 0)] 12 0.06
] Expected
Fin — 5 Fin — 5 ] Improvement 0.05
E[/ ()] = (fuin — m( “)+s¢w( — ) 5 0.04
S S A 0.03
4{\ 0.02
= |teratively add points that have maximized El, 2 0.01
we use a DIRECT global optimization algorithm c; 0
to identify that point From Jones, Schonlau, Welch, 1998

= Derivative-free, very efficient for low-dim.




Efficient Global Reliability Analysis @i,
(EGRA)

* Reliability methods find “failure surface” or “limit state contour” between “safe” and
“failure” regions, often defined as g(x)=0

* Integral of the probability density of the inputs over the failure region is the
probability of failure

op =j jfx (X, Xy peey X )AX,AX,...0X
9(<0

* Local reliability methods have problems with the nonsmooth, multimodal, and
highly nonlinear failure surfaces

« EGRA is a global reliability analysis that uses a variant of EGO

- The expected improvement is now the expected feasibility: penalize points
from being away from the g(x)=0 boundary

- Balance explore and exploit in locating the limit state (EGRA)
- Handles nonsmooth, multi-modal, highly nonlinear response functions
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Efficient Global Reliability Analysis

Gaussian process model of reliability limit state with

10 samples 28 samples

exploit

explore
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Efficient Global Reliability Analysis

Mean Variance Expected Feasibility

0 —
0.3
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EGRA: Benchmark performance

Reliability Function First-Order py Second-Order p; Sampling p;
Method Evaluations (% Error) (% Error) (% Error, Avg. Error)
No Approximation 70 0.11797 (277.0%) 0.02516 (-19.6%) —

x-space AMV2 26 0.11707 (277.0%)  0.02516 (-19.6%) —

u-gpace AMV2 26 011777 (277.0%)  0.02516 (-19.6%) —

u-space TANA 131 0.11797 (277.0%) 0.02516 (-19.6%) —

LHS solution 10k — — 0.03117 (0.385%, 2.847%)
LHS solution 100k — — 0.03126 (0.085%, 1.397%)
LHS solution ™M — — 0.03129 ( truth , 0.330%)
x-space EGRA 351 — — 0.03134 (0.155%, 0.433%)
u-space EGRA 35.2 — — 0.03133 (0.136%, 0.296%)

Rosenbrock

TAct

CL\\“\J/

——LHs (10,000)

/ = LHS (1,000}

== H5 [500]
= LHs (250)

il CDF Comparison e

0.2
!’ e PCE {250}
[ —Mv(5)

0.1 ——FORM [S66]

EGO

P!
a0 ¥

i Accuracy similar to exhaustive sampling at cost similar to local reliability assessmeriﬂ
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Bayesian Formulation

= Generate posterior distributions on model parameters, given

= Experimental data
= A prior distribution on model parameters

= A presumed probabilistic relationship between experimental data and
model output that can be defined by a likelihood function

7(0|d) o 7(0)L(d | 0)

e N\

Model parameters Observed Likelihood function which
Data Incorporates the model

Prior parameter
distribution
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Bayesian Calibration of Computer ..
Models

Laboratories
= Experimental data = Model output + error
d=M(0,X)+¢

= |f we assume error terms are independent, zero mean Gaussian random
variables with variance o2, the likelihood is:

171t _(di—M(8,x))°
L(O)_I;IG N exp{ > 7 }

= How do we obtain the posterior?
= |tis usually too difficult to calculate analytically
= We use a technique called Markov Chain Monte Carlo (MCMC)
= |n MCMC, the idea is to generate a sampling density that is

approximately equal to the posterior. We want the sampling density
to be the stationary distribution of a Markov chain.
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Bayesian Calibration: Approach  @:.

= Take initial set of samples from simulation
= Use LHS or space-filling design
= Develop Gaussian process approximation of the simulation
" Put priors on the input parameters
= Perform Bayesian analysis using MCMC
= Generate and analyze posterior distributions

= NOTE: GP surrogate adds a layer of uncertainty. However, this is explicitly
modeled in the revised likelihood:

/2l 1 _
L(6) =27 /2‘2‘ v eXpli_E(di _IUGP)TZ 1(di _IUGP):I

=0l +2

= Total uncertainty = (observation + model uncertainty) + surrogate uncertainty
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THANK YOU!
QUESTIONS?
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